Sitemap     |     CAS     |     Chinese
Introduction  
  Brief Introduction
Presidents
Location Map
Administration
 
  Location: Home > Research results
Atmospheric Sulfur Isotopic Anomalies Recorded at Mt. Everest across the Anthropocene
Close
Text Size: A A A
Print

Increased anthropogenic-induced aerosol concentrations over the Himalayas and Tibetan Plateau have affected regional climate, accelerated snow/glacier melting, and influenced water supply and quality in Asia.  

Although sulfate is a predominant chemical component in aerosols and the hydrosphere, the contributions from different sources remain contentious.  

Here, scientists report multiple sulfur isotope composition of sedimentary sulfates from a remote freshwater alpine lake near Mount Everest to reconstruct a two-century record of the atmospheric sulfur cycle.  

The sulfur isotopic anomaly is utilized as a probe for sulfur source apportionment and chemical transformation history.  

The nineteenth-century record displays a distinct sulfur isotopic signature compared with the twentieth-century record when sulfate concentrations increased.  

Along with other elemental measurements, the isotopic proxy suggests that the increased trend of sulfate is mainly attributed to enhancements of dust-associated sulfate aerosols and climate-induced weathering/erosion, which overprinted sulfur isotopic anomalies originating from other sources (e.g., sulfates produced in the stratosphere by photolytic oxidation processes and/or emitted from combustion) as observed in most modern tropospheric aerosols.  

The changes in sulfur cycling reported in this study have implications for better quantification of radiative forcing and snow/glacier melting at this climatically sensitive region and potentially other temperate glacial hydrological systems.  

Additionally, the unique Δ33S–δ34S pattern in the nineteenth century, a period with extensive global biomass burning, is similar to the Paleoarchean (3.6–3.2 Ga) barite record, potentially providing a deeper insight into sulfur photochemical/thermal reactions and possible volcanic influences on the Earth’s earliest sulfur cycle. 

This study was published in PNAS.  

Copyright © 2005-2008, lanzhou Branch;Chinese Academy of Sciences
E-mail:lzb@lzb.ac.cn Tel:2198855 Fax:8279855
In Lz city Tsr 2
site statistics :