Sitemap     |     CAS     |     Chinese
Introduction  
  Brief Introduction
Presidents
Location Map
Administration
 
  Location: Home > Research results
The research group of of Plateau animal’s Reproductive Biology revealed morphological and histone methylation characteristics of germ cell development in Cattle-yak
Close
Text Size: A A A
Print

The research Group of Plateau animal’s Reproductive Biology revealed morphological and histone methylation characteristics of germ cell development in Cattle-yak. And result was published in Theriogenology with the title of “The expression of histone methyltransferases and distribution of selected histone methylations in testes of yak and cattle-yak hybrid” on January 7,2020.  

  link: https://www.sciencedirect.com/science/article/pii/S0093691X20300017 

  Abstract: 

  Interspecies hybridization exists widely in nature and plays an important role in animal evolution and adaptation. It is commonly recognized that male offspring of interspecies hybrid are often sterile, which presents a crucial way of reproductive isolation. Currently, the mechanisms underlying interspecies hybrid male sterility are not well understood. Cattle-yak, progeny of yak (Bos grunniens) and cattle (Bos taurus) cross, is a unique animal model for investigating hybrid male sterility. Because histone modifications are vital for spermatogenesis, herein, we examined expressions of histone methyltransferases (HMTs) and distributions of histone methylations in the yak and cattle-yak testis. Histological examination of seminiferous tubules revealed that gonocytes and spermatocytes were established normally, however, spermatogenesis was arrested at the meiosis phase began at 10 months after birth in the hybrids. SUV420H1 was the only HMT examined showing a significant enrichment in cattle-yak testes at 3 months. Relative expressions of MLL5, SETDB1 and SUV420H1 were increased while SETDB2 and EZH2 were decreased in cattle-yak testes at 10 months. Relative concentrations of MLL5 and SUV420H1 were again increased while EHMT2 and PRDM9 expressions were decreased at 24 months. Immunofluorescent detection of selected histone methylations in cross-sections of testicular tissues or meiotic chromosomes demonstrated that depletion of H3K4me3 and significant enrichment of H3K27me3 and H4K20me3 were observed in Sertoli cells of cattle-yak. Levels and localizations of H3K4me3, H3K9me1, H3K9me3 and H4K20me3 were strikingly different in meiotic chromosomes of cattle-yak spermatocytes. These results highlighted the potential roles of histone methylations in spermatogenic failure and hybrid male sterility. 

Copyright © 2005-2008, lanzhou Branch;Chinese Academy of Sciences
E-mail:lzb@lzb.ac.cn Tel:2198855 Fax:8279855
In Lz city Tsr 2
site statistics :